

Egotistics

Version 0.9.0

by Wojciech Gryc and Bernie Hogan

The software described in this manual was devidithet) awvith Prof. Barry Wellman as Principatorvésisgeurrently
unlicensed, and the creators have decided to tetwmraliigiie intellectual property within thie switinvidis publicly released, at
which point it will be released under the GRiilar icense. This guide is current as of 03:30 berEc&007. For the latest
version of the software, manual, and other accornpBrgintjdocuments, please contact Wojciech Gryc atgnmdieoh@

Table of Contents

Y 0T 1 | SRS PRUPRRRR
YV (o T =T (U 1= 0 0=] 2
1 10T ¥ Tod 1 o PP 2
Creating YOUT FIFSE PrOJECT.......co it eeeeeci ettt e sttt et e e e e e e e e e aeeeeeeas 2
USING the ProjeCt BUIIET.........coo e emmmemr ettt e e e e e e e e 3
AddING MUITIPIE NEIWOTKS.ceiiiiiiiiee ittt ettt e s smmmnns e e e st e e e s enbe e e e e e e nnans 4
IMPOITING DALA.eeiiieiiiieie ettt et e e e sttt e e s e s mmmmme e £ e s e e e e e e bbb e e e e e anbne e e e e ensbneeeeannn 5
= Lo (o]0 0 I - | = VSR 5
[T=ToTo o [T N I = VPP SSSRPPPPPT 6
EXPIONNG the PrOJECT. ... ittt emmmma ettt e e e s e e e e et r e e e e e annnn e e e e e s 6
e TeT ol =] (T €= oo ST 7
LI SO0 15 1 = PR 7
RUNNing ScriptS AULOMALICAIIY.............oeit e rmmmmmr s e e e e e e e e e e e e e e e e aaa e e 8
Running from the Console / TErMINAL........... . cceeeeeiie e 9
S F=] 1[I o o B | = SRS 9
AAVANCEA CONCEPLS. ... e e e e e e e e e e e e 9
Working With Numerous Large NEtWOIKS.........cccocciiiiiiiiiee et meeemre e 9
Customizing the File MEeNU..........coo o 10
CUStOMIZING the TOOIDAT........ueiieiiiee e e e e e mmme e e e e e et eeeeeeeessaassnnnennennnnns 12
SOMWAIE AFCNITECIUIE........eiiiiiiiiiie e ceeee ettt e e s rmnent e s s bt e e e e s bbbt b et et et e aaaaeaeeeeeeaeens 12
(0] 1= B 1 =S 14
Creating YOUr OWN ClaSSES........uuuiiiiie e ceeeeee e s ettt e e e e e et e e e e e s smmmmm e e e e eaaeeesannsanssnnnn s 14
Printing to the Console and Status Bar........cccceeuiiiiiiiiiiiie e smmmee e 15
P N0 AVZ Y aTot=To Y o o I Yo 1 o] 1] T PSRRI 16
A BASIC EXAMPIE.....cciiiiiiieiie ettt ekttt smmnenr e e e e e e e et b e e e e e e e e e e e e e e 16
Advanced EXampPle: EQOS..... ..ottt e e e emmmms e e e e e e aaees 17
AAVANCEA EXAMPIE: AREIS.....co ittt rmmmnne et e e e et e e e e e annnreeeeas 17

About

Egotistics is software designed for two purposeshoptocessing and the analysis of ego networks
(personal networks). While a great deal of softwarstefor network analysis, few tools allow for the
analysis of numerous small networks that have littlecarelation to each other, or contain connected
egos.

The software itself was designedlava 5.0 and at the writing of this manual, is in the propety
phase. Specifically, the current major version is Otfe software itself is being tested and algorithms are
being optimized. Any feedback would be appreciated asgesaare made regularly.

The software itself was developed by Wojciech GrycB@ahie Hogan at Dr. Barry Wellman©s
NetLab, at the University of Toronto, in Canada. Thevsk is open source, but a license has yet to be
chosen (it will be selected prior to the first stable lipulelease). Until then, please contact us prior to
making modifications or redistributing the code.

To get in touch with us, feel free to e-mail Wojciech Gayavojciech@gmail.com.

System Requirements

Egotisticsrequires Python 2.2 or later to run, and Java 1.5.0.

Introduction

Egotistics is designed in a way to allow for easy batohgssing of networks, and its code structure
facilitates its extension with new algorithms and $oélor first-time users of Egotistics, there is a number
of options available, both for network analysis and olisgithe data itself.

Creating Your First Project

When you first enter the software, it will not load gmgjects. There are a number of ways to start a
project, though all assume that your data has alreastydmlected. Note that Egotistics is not designed
for data entry. Rather, it already assumes your dataredswithin other files. Each project requires pre-
existing networks, and the software will not functiotivguch networks being included in a project file.
It is recommended that networks be stored in talriteld formats in regular text. For example, a
network with a 3-node clique would look like the foliowy:

0 1 1
1 0 1
1 1 0

There are two ways to import basic networks. First, apreyect must be started by goingFite >

New Project This will create an empty file with empty data. To addndividual network, you may then
go toData > Import > Individual Networland selected the proper network file there. While Egggis
assumes network files haveNET extension, any file may be imported.

If you have multiple networks in one folder, goingXata > Import > Network Folders a much
more efficient option. Rather than choosing a netwank, Will now select a folder. All of thdNET files
within this folder will then be imported into the pragj@c much the same way as the individual networks
were.

Using the Project Builder

Importing networks assumes that there is no data glegtathed to the network itself. If you have
additional information for the networks you are intpa, you may use thieroject Builderutility
instead. This tool facilitates both the importing ofweeks and data organized witHtomma Separated
Values(CSV) files. To launch the Project Builder, gddata > Import > Launch Project BuildetYou
should see a window like the one below:

There are three key options for within the builder.tFirsu must select Rroject Location This is a
file where all of the project information will be stdrelhe folder where the file is located will also
contain all of the networks and external data.

The ego data is a file that contains ego-level dataeTsteould only be one row for each network,
with the first column being a unique 2ego id° for thewmtk. This column will not be editable in the
software, and is very important. Ego IDs need not beenigmalues.

The alter data file contains alter-level informationefiéhshould be one row for each node in the
network. The first two columns are extremely importarthis file and also cannot be edited. The first
column is the Ego ID, which corresponds to the egoaritihe node is a part of. The second column is
the order. Because the network files are just matribe software must know which row in the alter-
level data corresponds to the rows in the sociomatrites.s€cond column, the 2order® does this. The
order should start &and end aN-1, whereN is the number of nodes in the matrix. The CSV data
should be organized in ascending order, accordittuetalter order.

Once you have added the two important CSV files, ywustart adding networks. Click éwld
Networkand a new row will be added to the table. This has thmns, the first being the Ego ID that
the network corresponds to, while the second is theank@e location. To delete a network, left click on
the row to make sure it©s selected, and right clickshbuld bring up Belete Selected Rowption.

If your data does not contain alter-level or ego-levigrmation, you may still use the tools above.
Simply leave the text fields blank, and a new alter-gorlevel file will be created, with nothing but ego
IDs and alter orders.

Adding Multiple Networks

Adding individual networks is tedious, but does notéhevbe. If you have a large number of
networks and would like to add them all at once, click tbeafsiced button in the Project Builder. This
will bring up a new window that looks like the onedwel

If you have a file (ego-level data, alter-level datgplam text file) where the first line or first elemt
in every row has the ego ID, select this file. The pnograll then find all of the unique ego Ids, and will
import the networks from the same folder that file jausing the name [ego-id]. Note that this does no
assume a pre-existing extension on the file.

To further customize the importing process, you mag something in to there andPostfields.
This will then import all of the files that follow theming scheme you design. For example, if every
single network file in a folder is named 2my-network-EGQIEP where EGOID is the ego ID for each

network, you would write @my-network-° into tHere field, 2.net° into thePostfield, and would see a
preview of @my-network-[EGO-ID].net°.

Clicking 20OK?° will then add all of the ego IDs and m&trk locations into the table within Project
Builder.

Importing Data

As of version 0.5.Zcgotisticssupports the importing of GraphML and Pajek file fosn&oth
options are available &ata > Import followed byGraphML or Pajek respectively. Please note that
you using this import option will create a new projedtlér. Once you click on your choice, a window
will pop up with three options, tH&ource FolderProject Folder andExtension The first option allows
you to choose the folder where the files are locatede\line second option is where the new project will
be created. Finally, you may also choose the extewnsithre files within the folder, as Pajek and
GraphML files often come with different extensions.

Random Data

Egotistics also comes with the option of randomly getiney data by selectingata > RandomThe
submenu that pops up in this case allows for the rargimeration of Bernoulli graphs, allowing you to
select the density of the graph and the number of altkesdensity, in this case, represents the
probability that an edge between two nodes will eXibe generated networks are undirected ones, and
only one network is generated at a time.

Another random data generation features focuses ¢egfuaes®. Selecting this option allows one to
categorize every alter within a network by a categaipgledl.0, 2.0, and so on. This data is
automatically applied to every network in the projéet and the probability that an alter will be placed
into any specific category is equal.

Recoding Data

Egotisticscomes with the option of recoding data within projegtghis stage, this is only available
through the console, but provides a very useful way tdfgnalll ego-level, alter-level or network data at
once. For example, if one is interested in symmetrizinpalgraphs in a network and ensuring their
edge weights are only equal to 1 or 0, one can use decbabow:

For an entire GraphProject.
Recode.symAndBin(CP)

For a specific graph in a GraphProject.
x = CP.getEgoNet(3)
Recode.symAndBin(x)

To recode data in a specific column of a alter-level gata,can select a column and explain which
values to recode. Note that the first column at the altet-ego-level has an index of O. It is
recommended, however, that the first two columns of ideaaEgotisticsproject not be recoded, as they
contain important information for the software.

For x from above.

Recode.data(x, 3, 2old value®, 2new value®)

Finally, advanced users have the option of a @merge® camdnwehich allows multiple columns of
data to be merged into one. This is useful when data isnae messy and need to be organized. Note
that when merging, columns with a lower index have adnighecedence. For example, if you choose to
merge columns 3 and 4, but both have data, then thefdattumn 3 will be retained, while the data in
column 4 will be lost. Below are some examples:

Merge two columns for every set of alters.
Recode.merge(CP, 3, 4)

Merge all the columns with 2_GENDER? into column 3.
Note, however, that this is not case sensitive.

Recode.mergeByString(CP, 2 GENDERY?, 3)

More information on advanced functions can be fourti@igotistics JavaDocsIhe class that
performs the recoding is undedu.netlab.Recode

Exploring the Project

Egotistics comes with four main tabs which allow youigw the various aspects of the project you
are working on. The first of these, and the one showmwesoftware loads, is the console. This is
where code is executed and results of many calcotatice displayed. Fortunately, a great deal of work
has been put into the software to ensure one needveahg coding ability to use the software.
However, if you want to create correlation matrices erdsga that does not fit into the ego-level / alter-

6

level paradigm Egotistics employs, the output wilshewn in the console. To learn more, please see the
manual sectioifhe Console

The next two tabs are call&djo AttributesandAlter Attributes Simply put, these are tables that show
the ego-level and alter-level data. The ego-level @ddia always shows information on all of the egos,
while the alter table shows the attributes of allahers of one ego at a time. When you select an
algorithm from theego Measuresr Alter Measuresnenus, most of the results will be appended to these
two tables.

Finally, you have th&letwork which shows the sociomatrix of the ego you are ctlyrerewing.

To switch the view of thalter AttributesandNetworktabs, you can do so by selecting the proper ego
id from theEgo Net Selectiohox.

Project Preferences

Under the Project Properties label at the side pahelrn above), two important properties may be
set on the fly. Both of these modify the actual strigctdrthe network being analyzed, but do not lead to
permanent changes to the network.

Append connected ego. Since ego networks sometimes contain a connected ego and sometimes
do not, this option lets you add the ego when it is required. The network
will receive a new node that is connected to every other node with a
connection strength of 1. Note that measurements and calculations with
this ego will not be added to either the ego-level or alter-level files, but
may significantly affect the results of the other nodes.

Remove isolates. If you would like to run your analysis while ignoring isolates, this option
will allow you to do so. Any measurements will add\dA label to the
isolates themselves.

Selecting both. If you select both options, then the network will first have its isolates
removed, and then a connected ego will be added. The reason this order
is used is that if you add a connected ego first, then no alter is an isolate.

The Console

Egotistics is a tool that is built in Java but implemsdgthonas a scripting environment. All of the
functions available in the file menus and other graphisef interface (GUI) tools can also be accessed
using the console.

Using the console is similar to most other scriptamgguages. For those familiar with fRgthon
scripting languagelythonuses the same syntax, and comes with support for Jgeisodnd classes.

The scripting language allows for simple mathematied,iateraction with classes already in the
Egotistics software. Accessing methods for statisénalysis is simple, and often requires only passing
one or more variable. The EgotistitavaDocsshow all the classes, and any methods that arkethhe
static and public may be accessed using the console.

Indeed, the entire program can be used using the eprsal the GUI itself can then be ignored.
Below are some examples of using the software throwgbahsole:

g = LoadProject("E:\\myproject.dat")

Loading a project. Note that due to the way handles Strings, every backslash has tebptegpre
as \\.

Components.countAll(g)
Counts the number of components in every ego network in the project and appends this information

to the data.
ClusteringCoefficients.getClusterCoAllAlters(g)

Calculates the clustering coefficient of every alter in each network anddsofhe new data to every
alter table in the project.

In addition to using methods and loading graphs gepts the software also comes with a number of
environment variables that dictate how the softvitaedf works. While the GUI was designed to modify
these without the console, the console also providesydamaccess and modify them through code.
These environment variables include:

cP Standing for @Current Project®, CP is used by the software as a placeholderdarrég
project. If you load a project using the console, it is not accessible through the GUI unless you
call it CP. Similarly, if you load a project using the GUI, it can be accessegl thé$ name.

ul The current instance of the program can be accessed through the Ul identifienuamolea
of common functions may be used to take advantage of the GUI. For example, Ul.dispose()
leaves the program, while Ul.getFile() may be used to open the file dialog window and all you

to retrieve a file name. See the JavaDoc for edu.netlab.ui.MainFrame for moreatidarm
Engine The Jython interpreter. This runs the actual scripting.

NET# Reference to the current project©s (if one is being shown using the graphical usej inerfa
networks, with # representing a number form NtevhereN is the number of networks in the
project. This allows for easy access

DATA# Same as above, but references @phDataobject in the current project.

Running Scripts Automatically

During the Egotistics startup, a script file calledoexec.txtlocated in the program directory is run
automatically. This file may be edited using code Watld normally be typed into the console. Adding
code to the window will force Egotistics to executeribes script whenever it starts. Keep in mind that
removing any of the pre-existing code can disable featwithin the program. It is recommended that
scripts be appended to the end of the file, and that jgBpgxcode remain unchanged.

Running from the Console / Terminal

It is possible to run Egotistics without using a graphuser interface. To do so, one can use the -s
option within the software. To do this, use the DOS Ptamperminal Window and go to the Egotistics
directory. Then type the following:

java -jar egotistics.jar -s <SCRIPT DIR>
In this case, changeSCRIPT DIR>to the location of the script file you are running. While th
Egotistics console does not support loops, usingehisife allows for creating for loops, while loops,

conditional statements, and other similar structuresdard Python syntax should be used when
implementing such features.

Sample Script File

The script file below shows an example of how toter@anew project, generate a five random
networks, one category, calculate a few general netstatistics, and then save the entire project to the
original location.

NetWriter.newProject("/home/wojciech/Desktop/random nets", "project.nxe")
P = GraphProject("/home/wojciech/Desktop/randomnets /project.nxe")
RandomGen.bernoulliNet(P,10,0.5)

RandomGen.bernoulliNet(P,30,0.4)

RandomGen.bernoulliNet(P,50,0.3)

RandomGen.bernoulliNet(P,70,0.2)

RandomGen.bernoulliNet(P,90,0.1)

RandomGen.alterCategory(P,2)

NetLabAssort.get(P,2)

Assortativity.r(P,2)

NetStats.numAlters(P)

NetStats.density(P)

NetWriter.saveProject(P)

Advanced Concepts

Egotistics was built for sociological research andksdrest with small networks. However, large
networks are also supported, though in many casdgsenaay be slow.

Working With Numerous Large Networks

If your project contains a large number of networks, mdnyhich have a few hundred or more

nodes, the amount of memory required by Egotisticsheikxtremely large. In most cases, the default
heap size that Java allots for the software will befiicgent, and Egotistics will crash.

In order to run such a network, Egotistics should bedaed from the command line, with custom
settings for Java. Specifically, while Egotistice@mally launched at the command line with the
following code,

java -jar egotistics.jar
it should now be launched with,
java -mx256m -jar egotistics.jar
where 8256° is replaced by the number of megabytes afonethat will be allotted for use within the

program. It is impossible to say how much memory shbelallotted, as this is dependent on the project
itself.

In cases where extremely large (over 1000 nodes) netacekssed, it is advisable to write a script
file and launch the software to automatically rundbept without loading anything into the user
interface (se®unning From Console / TerminaMost functions that accepiGraphProjectobject as a
parameter will also accept@GraphDataobject as a parameter instead, thus saving computatioeal
and memory. Combining output with tkiériter class inEgotistics which allows one to write directly to
a file, can make processing large networks simple ai#t.cgelow is an example where a sePaijek
files are loaded, turned in@raphDataobjects, and then analyzed.

w = Writer("/home/wojciech/Desktop/output.txt”, 0)
Supposing there are 10 networks, called netl.paj, net2.paj, etc.
for i in range(10):
s = "lhome/wojciech/Desktop/data/net" + str(i) + ". paj"
p = PajekReader(s)
graph = p.getGraphData()
Now we have the GraphData object loaded.
Count the number of alters.
numAlt = g.getAlterCount();
Write this number to file.
w.write(str(numAlt) + "\n")

End the program.

Customizing the File Menu

Since Egotistics is implemented through the usiytifon the file menu system has been
implemented through the use of text files and is fallgtomizable. Indeed, with simple scripting similar
to that used in the console and the editing of twbfiles, the entire file menu may be changed.

10

Rather than being coded into the software, the file meloaded at during the Egotistics startup from
two separate files, both located in the program dirgciThe first file, nenu_labels.txicontains the
various labels used within the actual software. Theunsémicture is organized using four different
notations, all of which are either one or two charadterg and precede the actual file label. They are:

+ Indicates a new file menu within the actual window, similar to File, Edit, Vaaa other
similar menus in popular Windows applications.

++ Indicates a sub menu. This is like a secondary drop-down menu within held within a main menu
(+).

* A clickable menu button. This is a button that runs a command when clicked, and is stored as a

button in one of the main menus.
Like above, but this is a button stored in a submenu.

*%

Using the above specifications, it should be clearasbmenu+) must always be held within a
menu ¢), and that submenu buttorts Y should only follow a submenu declaratier) For example,
the code below,

+ Main Menu
++ Options
** Option 1
** Option 2

* Exit

will yield the following type of menu:

To add further customization to the menus, one cah dabwetton as- SEP -- to create a separating
line between buttons in a menu or submenu.

A second filemenu_commands.pdontains the code to be executed whenever a buttomanu is
clicked. Note that menu titles, submenu titles, andragéma cannot run code. Code is written like code
within a console. The only difference is that theecddes not support multiple lines: rather than creating
new ones, each line should end with a semi-colon. Eagltdimesponds to the object represented in the
corresponding line of thmenu_labels.tXile.

For example, if we want 20ption 2° to count the numberashponents in each network GP, the
third line of themenu_labels.tXile should beComponents.countAll(CP)

Similarly, if 2Exit° should say 2Goodbye...° and then etkie program, the fifth line of
menu_labels.txhould beprint "Goodbye..."; Ul.dispose()

11

Customizing the Toolbar

One can also customize the toolbar in a similar way asfynag the file menus. Two files are located
in the program directorypolbar_commands.tandtoolbar_icons.txtThis systems works in the same
manner as the file menu one: tiline of the first file corresponds to the code exedwvhen the nth
toolbar button from the left is clicked.

The list of toolbars is included in the second filmlbar_icons.txtEach line of this file contains two
pieces of information, the toolbar button®©s titlevi@tbby the icon©s image location. Icons are located i
the img folder in the program directory, and each isan16-pixel-wide square, saved in GIF format.
Egotistics will resize the toolbar to whatever size thigdn icon is, so it is recommended that all icons
are of this size. The two pieces of information ard bglia semi-colon.

While not used in the toolbar included in the softwareirttgedirectory contains generic.gificon for
scripts.

For example, if one was interested in making a toolbdr twib buttons, one that prints 2Hello® in the
console and the other leaves the programtabléar commands.tfile would contain the following
information:

print "hello”
Ul.dispose()
Thetoolbar_icons.txfile would have the following:
Print "hello" in console.; fimg/Generic.gif
Exit the program.; /img/Generic.qgif

The text included appears only when one moves ttsacorer the button in the toolbar. Below is a
screenshot of the new toolbar.

Standard view. With tool tip.

Software Architecture

EgotisticsOs goal is to aggregate information froaer ptbhgrams and implements algorithms currently
not available in anyAPIs. The software is also built to act like a batch psae it will apply the
algorithms and make measurements of network statistid structural information on all networks
within a project automatically.

12

The software itself is built usinfavaand implementdythonas the standard interface. While a
graphical user interface is available, the buttonsnaaus ultimately callythoncommands, which then
interact with the project currently loaded into tiregwork. The entire program architecture is shown in
the diagram below:

Jython

v Y v
f 4 |Wrapper far|Wrapper far
Algorithms | "2 (SN a) JUNG

\ \ |
v

Integrator

;

User Interface

In this caseJythonis the main interface between the project and netwmalkysis tools within the
program. Each measurement tool is contained witdewvaclass and implemented as a static method.
This allows one to call the methodJdythonwithout having to instantiate any new classes. Theotrr
Egotistics version will include custom algorithms anmappers for specific methodskandJUNG
Egotistics is also open source, and has been desigiretporate new classes and algorithms with
ease. This is described in a later section.

To facilitate incorporation of new measurements argsts into a project, amtegratorclass was
created, which contains methods for adding ego-level ltgrd@vel statistics. These are described in full
detail in the project@avaDocsand an example of how to create ego- and alter-ledel isagiven later
in this manual.

The data within a project is organized iGephProjectobject. AGraphProjectobject contains ego-
level statistics and attributes, which includes netwevel information like number of alters or network
density. The object also contains a collectioadphDataobjects, which act as a repository for alter-
level characteristics of each network, as well as éteark itself.

While the software treats each network as an adjaceatyxpfor convenience, every network is
stored within a&Graphobject, which allows it to be loaded easily into tbivgare, and allows for a few
simple capabilities, such as cloning the matrix.

The UML schema outlining how a project is organigeshown below:

13

Graph

Attributes

network

GraphData

Methods
cloneM atrix

getM atrix

Attributes
network
alterD ata

alterDataTitles

GraphProject

Attributes
egoData

egoDataTitles

Methods

getEgoNet

Methods
getEgoData
getEgoNet

Project Files

When you save a project to a file, a number of filescaeated (or overwritten!). The most important
file is theNXEfile, which stores all of the project information. TREE file is a standard text file with
file locations listed at each line. The first line repres the location of the e@5Vfile, the second is the
alter CSVfile, and the third line onward contains the locationhe network files themselves.

Creating Your Own Classes

If Egotistics does not contain the algorithms requiced/bur own analyses, extending the software is
not difficult. A typical class for providing measuremt® contains private methods to help with the
measurements, as well as public methods that calcblteeasurements at the ego level, alter level, or
both.

Supposing you would like to implement a 2Some Aldor®, you could create a class with that name.
Two required imports are tifgrayList, which is required for alter-level statistics, and thetksgcs
Integrator, which connects the class©s output to the speciphProject

import edu.netlab.util.Integrator;
import java.util. ArrayList;

public class SomeAlgorithm {

The name of the method within the class does not m#tteigh it is recommended that
implementations of algorithms use static methods. Dsingllows one to call the class usilyghon
without instantiating it first. The method below acsemily one argument, ti@&aphProject though
more parameters are allowed. When looking for K-Plexasze N or greater, for example, such a
method would be callegetEgoMeasures(GraphProject gp, int n, int k)

public static getEgoMeasures(GraphProject gp) {

In the case of egos, there should be one measuremmeagqyeand each is stored as a String. This is
meant to facilitate the reading and writing of data.
String[] output = new String[gp.getNetCount()];
After the above is instantiated, one should have adogpme code that will assign the required
values for each ego. Egotistics is open source alydcfuinmented, so taking a look through the
packageedu.netlab.algorithmesan help clarify what goes in this section of code.

14

One the calculations are done, however, the Integratobe used to assign the values to the proper
location of theGraphProjectobject. TheaddEgoData()method only has two parameter§teang
representing the title of the data in the ego tableflamdctual output of the measurements.

Integrator.addEgoData("Header", output);
}

A similar process is behind developing alter-basedsmes. However, rather than creating an array
of measurements, aarayListis used instead. In this case, each member &riagListis an one-
dimensionalStringarray, with measurements done for each alter in the eigmrk.

public static getAlterMeasures(GraphProject gp) {
ArrayList allMeasures = new ArrayList();
To get measurements in, one much loop through eactaedget the propé&raphDataobject
representing that ego©s network and alters.
for (inti= 0; i < gp.getNetCount(); i++) {
GraphData gd = gp.getData(i);
Once gd, the object representing the current egoonketivas been obtained, one can create an String
array that will contain one empty data slot for each aitéhe network.
String[] measures = new String[gd.getAlterCount()];
Next, a second loop should be created where each aissiggied the measure required.
for (int j = 0; j < gd.getAlterCount(); j++) {
I/l Your code.

}

Again, the code inside the loop depends on the spadgforithm. See the Egotistics source code for
examples. Once the entire String array is populatedartfay is added to tharayList

allMeasures.add(measures);

}

Finally, once all the measures are in, the data title atadisl sent to thimtegrator class, which adds
the new data to the curre@taphProject

Integrator.addAlterData("Header", allMeasures);

}

Printing to the Console and Status Bar

Aside from appending informationGraphProjectobject, it is also possible to print information in the
console and status bar within Egotistics. In boths;asge actually sends information to #ystem.out
stream. While this usually prints to a terminal or canthline window, Egotistics ensures that anything

15

sent to itssystem.out stream will be printed in the console. One must notegkiery at the console
itself uses HTML formatting. As such, information semthe console could be represented as plain text,
or may use HTML tags.

If one is interested in printing on the status bar, oustiprecede the text sent to #ystem.out
stream by!) . Thus, the following Java code will be printed on th&usthar:

System.out.printin("(!) This will update the status bar.");

The status bar does not support HTML formatting. Thesole and status bar both disregard new line
characters (the console requirese or <p> tag, while the status bar only supports one line of,teat
one can use either thent() or printin() functions when passing information to be printed.

Advanced Python Scripting

Egotistics allows for advanced Python scripting usungfions, classes, and other tools found in both
Java and Python. While Java-based coding was coveogd,ahe Integrator class used is also available
within Python. Combining this with GUI-based Java tiores allows one to easily create new methods
and implement functions not currently available wtBgotistics without having to recompile it using
Java.

For those interested in learning more, it is recomraéitiey visit the Jython website
(http://www.jython.org) and read the JavaDocs availédoi¢his software.

A Basic Example

At the ego-level, &raphProjectobject has a simple function callgdtEgoData(<ego>, <column>)
that returns a String object with the required data.ctihemn order corresponds to the other shown in
the actuaEgotab in the software.

To obtain information on a specific ego (e.g. the oetvor alter-level data), one needs to get a
GraphDataobject from the&sraphProject This is done through trgetGraphData(<ego>)method,
which returns the requirgdraphDataobject. This object then hagatAlterData(<alter>, <column>)
method that returns information about alters.

Using the above, it is possible to make calculationlsadmain information through Python. Inserting
it back into theGraphProjectobject requires the use if theegratorclass. This is a static class that
handles any data insertions into projects, and hasvthenportant functions:
addAtEgoLevel Contains three parameters in the following or@maphProject object
Header/Title of columyString array representing datd’he order of the
array corresponds to the order of the egos in the graphical user interface.

addAtAlterLevelAll With the following parametersraphProject objegtHeader/Title of
column ArrayList object containing String arrayl this case, each

16

ArrayList element contains @tringarray which has data corresponding

to each alter.

Note that a similar function exists which accepts a String[][] array rather
than an ArrayList.

A simple example at the ego level is presented beldere a new column is added to the data with
an integer for each ego. You may run the code belovg tiseScripting Window
egolist =[]
for i in range(0, CP.getNetCount()):
egolist.append(str(i))
Integrator.addAtEgoLevel(CP, "New", egolist)

Advanced Example: Egos

Another example is presented below. In this case, thetgénsalculated for each ego using the
standardegotisticsfunctions, but a second column is added. This seaandha has the value 2A°
present if the density is below 0.5, while 2B° if the dignis higher.

Calculates density.
NetStats.density(CP)
The value below is the index of the density colum n.
It is the newest column added.
densindex = CP.getEgoDataTitlesLength() - 1
Now a new list is created.
egolist =[]
Loops through each ego.
for i in range(0, CP.getNetCount()):

val ="B"

if (float(CP.getEgoData(i, densindex)) < 0.5):

val ="A"

egolist.append(val)
Now it adds the information using the Integrator class.
Integrator.addAtEgoLevel(CP, "Density Categories", egolist)
Needed to update user interface.
Ul.showProject(CP)

Advanced Example: Alters

To add alter-level functions, it is easiest to use a Jlijradpject. The first array contains a set of

17

String[] objects, each one corresponding to the altesis igo network. The example below simply

appends a column full of periods to the data set.
egolist =]
for i in range(0, CP.getNetCount()):
alterList =]
gd = CP.getGraphData(i)

for i in range(0, gd.getAlterCount()):

alterList.append(".")
egolist.append(alterList)
Integrator.addAtAlterLevel All(CP, "New", egolist)
Ul.showProject(CP)

18

